LLNL-PRES-575652

Prepared by LLNL under Contract DE-AC52-07NA27344.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Climate Science Responds to "Big Data" Challenges: Accessing Analyzing Model Output and Observations

February 15, 2013

Dean N. Williams

On behalf of Multiple Earth System Communities and Projects

SAMSI/NCAR Workshop on Massive Datasets in Environment and Climate

Overview: Bring together large volumes of diverse data

Data integrating enterprise system

Insight into big data reveals three very significant challenges:

- Variety: managing complex data, including storage and retrieval, from multiple regional and non-regional data indices, types and schemas
- Velocity: distributing live data streams and large volume data movement quickly and efficiently
- Volume: analyzing large-volume data (from terabytes to exabytes) in-place for big data analytics

Community invests in:

- Accessing Global Information: Accessing climate data and content information from everywhere via the web, sensors, and applications in an integrated and federated environment
- Flexible Infrastructure: Flexible automated administration, easy-to-use analytics, and virtualization at every level
- Scalable Framework: Big data analytics in a scalable environment with efficient parallelism, workloadoptimization, and real-time streaming process

Simulation

Observation

Reanalysis

Predictive analysis of complex systems

Collection and data management

- Sensors
- Data models
- Transport/comm
- Storage and provenance

Data-intensive computing

- Architectures persistent data to streams
- Programming environments
- Human-computer interface

Decisions and control Design optimization Policy making (Humans)

Pattern discovery

- Descriptive statistics
- Graph analytics
- Machine learning
- Signal and image processing

Predictive models

- Statistical predictionclassification-anomaly detection
- Steering discrete-event/ continuous simulations

Example Project: The CMIP experiment design

CMIP5: 62 models available from 25 centers

- CMIP = Coupled Model Intercomparison Project
 - Phase 1: Idealized simulations of present-day climate (~1 Gigabyte (GB))
 - Phase 2: Idealized simulations of future climate changes (~500 GB: CMIP2/CMIP1=500)
 - Phase 3: More realistic simulations (2004 present) (~35 Terabytes (TB): CMIP3/CMIP2 = 70)
- CMIP 5 multi-model archive expected to include (3.5 Petabytes (PB) CMIP5/CMIP3 = 100):
 - 3 suites of experiments
 - 25modeling centers in 19 countries
 - 60+ models
 - Total data, ~3.5 PB
 - Replica 1 2 PB
 - Derived data ~1 PB
- Global distribution
- Timeline fixed by IPCC (2012 2013)
- The community organizes, manages and distributes the CMIP/IPCC (Intergovernmental Panel on Climate Change) database of climate model output
- CMIP6 (350 PB 3 EB ?)

kilobyte (kB)	10 ³
megabyte (MB)	10 ⁶
gigabyte (GB)	10 ⁹
terabyte (TB)	10 ¹²
petabyte (PB)	10 ¹⁵
exabyte (EB)	10 ¹⁸
zettabyte (ZB)	10 ²¹
yottabyte (YB)	10 ²⁴

CMIP3 (IPCC AR4) download rates in gigabytes per day

Data challenge of CMIP3 archive vs. CMIP5 archive

CMIP3 M	volume (GB)	
BCCR	Norway	862
CCCma	Canada	2,071
CNRM	France	999
CSIRO	Australia	2,088
GFDL	USA	3,843
GISS	USA	1,097
IAP	China	2,868
INGV	Italy	1,472
INMCM3	Russia	368
IPSL	France	998
MIROC3	Japan	3,975
MIUB	Germany/Korea	477
MPI	Germany	2,700
MRI	Japan	1,025
CCSM	USA	9,173
UKMO	UK	973
Totals		34,989 (TB)

Archive size: 35 TB

	CMIP5 Modeling Centers		volume (TB)	
	BCC	China	51	
	CCCma	Canada	51	
	CMCC	Europe (Italy)	158	
	CNRM	France	71	
	CSIRO	Australia	81	
	EC-EARTH	Europe (Netherland)	97	
	GCESS	China	24	
	INM	Russia	30	
	IPSL	France	121	
	LASG	China	100	
	MIROC	Japan	350	
	MOHC	UK	195	
	MPI	Germany	166	
	MRI	Japan	269	
	NASA	USA	375	
\langle	CESM	USA	739	
	NCC	Norway	32	
	NCEP	USA	26	
	NIMR/KMA	Korea	14	
	NOAA GFDL	USA	158	
	Totals		3,108 (PB)	

Archive size: currently: 1.4 PB total: 3.1 PB by 2013

 $CMIP5/CMIP3 = 10^{2}$

Focus on the U.S. climate model simulation output.

Projected DOE/NSF CESM output

year 2000

Cloud type approach for distributed data

The Earth System Grid Federation (ESGF) distributed data archival and retrieval system

- **Distributed and federated** architecture
- Support discipline specific portals
- Support browser-based and direct client access
- Single Sign-on
- Automated script and GUI-based publication tools
- Full support for data aggregations
 - A collection of files, usually ordered by simulation time, that can be treated as a single file for purposes of data access, computation, and visualization
- User notification service
 - Users can choose to be notified when a data set has been modified

Data quality control check operations end in digital object identifiers (DOIs)

- Publishing data to an ESGF portal performs QC Level 1 (QCL1) check
 - QCL1 data are visible to users and are indentified as QCL1 on the UI
- DKRZ (MPI) quality control code is run on data to perform QC Level 2 (QCL2) check
 - QCL2 data are visible to users and are indentified as QCL2 on the UI
 - Statistical quality control automatically identify data unusual enough to need further inspection
- Visual inspections are performed for inconsistencies and metadata correctness at QC Level 3 (QCL3) check
 - QCL3 data are visible to users and are indentified as QCL3 on the UI
 - Digital Object Identifiers (DOIs) are given to data sets that pass the QCL3 check

ESGF data holdings (~2 PB)

- Phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5)
- Coordiated Regional climate Downscaling Experiment (CORDEX)
- Climate Science for a Sustainable Energy Future (CSSEF)
- European Union Cloud Intercomparison, Process Study & Evaluation Project (EUCLIPSE)
- Geo-engineering Model Intercomparison Project (GeoMIP)
- Land-Use and Climate, Identification of robust impacts (LUCID)
- Paleoclimate Modeling Intercomparison Project (PMIP)
- Transpose-Atmospheric Model Intercomparison Project (TAMIP)
- Clouds and Cryosphere (cloud-cryo)
- Observational products more accessible for coupled model intercomparison (obs4MIPs)
- Reanalysis for the coupled model intercomparison (ANA4MIPs)
- Dynamical Core Model Intercomparison Project (DCMIP)
- Community Climate System Model (CCSM)
- Parallel Ocean Program (POP)
- North American Regional Climate Change Assessment Program (NARCCAP)
- Carbon Land Model Intercomparison Project (C-LAMP)
- Atmospheric Infrared Sounder (AIS)
- Microwave Limb Sounder (MLS)

Example ESGF web portal

ESGF software system integrates data federation services

- NetCDF Climate and Forecast (CF) Metadata Convention
 - (LibCF)
 - Mosaic
- Climate Model Output Rewriter 2 (CMOR-2)
- Regriders: GRIDSPEC, SCRIP, & ESMF
- Publishing
- Search & Discovery
- Replication and Transport
 - GridFTP, OPeNDAP, DML, Globus Online, ftp, BeSTMan (HPSS)
 - Networks
- Data Reference Syntax (DRS)
- Common Information Model (CIM)
- Quality Control
 - QC Level 1, QC Level 2, QC Level 3, Digital Object Identifiers (DOIs)
- Websites and Web Portal Development
 - Data, Metadata, Journal Publication Application
- Notifications, Monitoring, Metrics
- Security
- Product Services
 - Live Access Server, UV-CDAT

Advanced analytics, informatics, and visualization for scientists

- Analysis and visualization is a key aspect of scientific analysis and discovery
- Advanced interactive visualization is rarely used by scientists
- Interfaces too complex, pickup too costly
- Interactive climate visualization requires:
 - Intuitive interfaces
 - Seamless integration with high performance analysis workbenches
 - Parallel streaming visualization pipelines

- □ Bring together robust tools for climate data processing
- □ Integration heterogeneous data sources (e.g., simulations, observation, re-analysis)
- □ Local and remote data access and visualization
- □ Reproducibility

Interactive visualization and analysis

- Drag-and-drop variable and plots to create visualizations.
- Each plot has many user-friendly configuration options.

Vector plots

- Facilitates the visualization of 3D vector fields
- Utilizes streamlines on slices, glyphs on slices, or glyph volumes

Interactive hyperwall visualization

- Uses parallelism to address data complexity
- UVCDAT runs on each display node (full-res 1-cell hyperwall display)
- UVCDAT runs on control node (low-res 15-cell touchscreen display)
- Control node interactions broadcast to all hyperwall nodes

Using UV-CDAT's 2D and 3D Capabilities to Explore Explore Time Series Data

- Demo using DV3D to examine 2meter temperature from MERRA reanalysis
 - Use of a "3D Hovmöller" to explore anomalies
 - Basic attribution of extreme heat waves
 - Use of 250 mb meridional wind anomaly to identify stationary Rossby Waves
 - Identification of possible new planetary wave
- Demo of 3D slicer to examine Hurricane Sandy (October 2012)

Spatio-temporal pipeline: UV-CDAT use case 1

Use Case 1: High spatial resolution, high temporal resolution, image sequence production

Problem

Large datasets exist with many timesteps and high temporal resolution. UV-CDAT must be capable of handling these datasets. Existing tools do not support high temporal resolution well.

Solution

Added capability within UV-CDAT ParaView to partition within time to allow for multiple timesteps to be processed in parallel. Processors are divided into "time compartments", and each file is processed by a time compartment.

Use Case 1 performance results: Mustang tests

Number of Timesteps	Number of Processes (P)	Time Compartment = P	Time Compartment = 8
		(seconds)	(seconds)
2	16	46.96	21.76
4	32	81.84	21.47
8	64	159.77	21.16
16	128	235.61	26.85
32	256	1,103.00	23.13
64	512	2,365.89	25.02
128	1024	8,128.92 (~2 hrs)	30.15
256	2048	28,862.55 (~8 hrs)	62.83

- Measured on Mustang supercomputer, 8 cores per node
- Each time step is 1.4 GB
- Panasas parallel file system
- Testing having all processors read each time step versus having eight processors read each time step

Spatio-temporal pipeline: UV-CDAT use case 2

Use Case 2: High spatial resolution, high temporal resolution, time average

Problem

Multiple timesteps need to be averaged together to produce a data product based on the results.

Solution

Added capability within UVCDAT ParaView to take multiple timesteps and compute various statistics (average, min, max, standard deviation) using the spatio-temporal pipeline.

Use Case 2 performance results: Hopper tests

Time Compartment Size	Total Time (seconds)
1	145
2	278
12	93
48	151
96	244
240	525
480	1204

- Measured on Hopper supercomputer
- 480 cores, 20 nodes
- Analysis of Michael Wehner's climate data
- 324 timesteps, total data size is 20 GB
- Calculate yearly statistics from monthly data
 - Min, max, average, standard deviation
- Lustre parallel file system

ESGF/UV-CDAT integrated with the hardware and network

- Users communicate with ESGF front-end servers via HTTP
 Large data sets are
 - made available to users directly from the Climate Storage System (CSS) via vsftp and GridFTP
- 3 Through UV-CDAT, ESGF will perform analysis of raw data if requested by users through the front-end servers to the analysis (hadoop) cluster

ESGF's and UV-CDAT multiple collaborations

High-level Conceptual View of CSSEF Test Bed Architecture and Workflow

